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Abstract

Ab initio GW calculations are a standard method for computing the spectroscopic properties

of many materials. The most computationally expensive part in conventional implementations of

the method is the generation and summation over the large number of empty orbitals required to

converge the electron self energy. We propose a scheme to reduce the summation over empty states

by the use of a modified static-remainder approximation, which is simple to implement and yields

accurate self energies for both bulk and molecular systems requiring a small fraction of the typical

number of empty orbitals.

PACS numbers:
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INTRODUCTION

The GWmethodology [1–3] has been successfully applied to the study of the quasiparticle

properties of a wide range of systems [4] from traditional bulk semiconductors, insulators

and metals to nanosystems like polymers, nanotubes and molecules [5–7]. The approach

yields quantitatively accurate quasiparticle band gaps and dispersion relations from first-

principles. A perceived drawback of the GW methodology is its computational cost; usually

thought to be an order of magnitude more than a typical DFT calculation. One of the main

computational bottlenecks of the traditional ab intio GW method [3] is the cost to generate

the large number of empty orbitals needed to converge the Coulomb-hole summation term

of the self-energy.

Within the conventional GW approach, the quasiparticle energies and wavefunctions (i.e.,

the one-particle excitations) are computed by solving the following Dyson equation [2, 3] (in

atomic units):
[

−
1

2
∇2 + Vion + VH + Σ (EQP

nk )

]

ψQP
nk = EQP

nk ψ
QP
nk (1)

where Σ is the non-local, energy-dependent, self-energy operator within the GW approxi-

mation, and EQP
nk and ψQP

nk are the quasiparticle energies and wavefunctions, respectively. In

the typical GW approach, density functional theory (DFT) within the Kohn-Sham approx-

imation [8] is often chosen as the starting point for a subsequent calculation of the electron

self-energy: the Kohn-Sham [8] wavefunctions and eigenvalues are used here as a first guess

for their quasiparticle counterparts. In principle, Eq. 1 is a matrix equation, where Σ should

be constructred in an appropriate basis. In many cases, only the diagonal elements are siz-

able within the basis spanned by the Kohn-Sham mean-field orbitals. We assume this to be

the case for the rest of the paper. The effects of Σ can thus be treated within first-order

perturbation theory in the form Σ = Vxc + (Σ− Vxc), where Vxc is the independent-particle

mean-field approximation to the exchange-correlation potential of Kohn-Sham system [8].

Within the GW approximation, the self-energy operator is expressed as Σ = iGW ,

where G is the electronic Green’s function and W is the dynamically screened Coulomb

interaction. In the GW and static-COHSEX (the static limit of GW) approximations

for the self energy, the self-energy operator, Σ, can be broken into two parts, [2, 3]

Σ = ΣSX +ΣCH where ΣSX is the screened-exchange operator and ΣCH is the Coulomb-hole

operator. The screened-exchange operator is similar to the Fock operator in Hartree-Fock
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theory, except the bare Coulomb interaction is replaced by the screened Coulomb interac-

tion: WGG′(q ;ω) = ǫ−1
GG′(q ;ω)v(q+G′) where v is the bare Coulomb interaction. When G

and W are constructed in a non-self-consistent way from the DFT orbitals and eigenvalues,

the GW approach is referred to as being within the G0W0 approximation. In this article,

all results are presented within this approximation.

In a conventional GW calculation within the generalized plasmon-pole approximation [3],

both the calculation of the Coulomb-hole self energy term:

〈nk|ΣN
CH(r, r

′;E) |nk〉 =
1

2

N
∑

n′′

∑

qGG′

〈nk| ei(q+G)·r |n′′k−q〉 〈n′′k−q| e−i(q+G′)·r′ |nk〉 (2)

×{
Ω2

GG′(q)

ω̃GG′(q) [E−En′′k−q− ω̃GG′(q)]
v(q+G′)}

and the calculation of the dielectric screening matrix, ǫ = 1 + 4πχ, at ω = 0:

ǫGG′(q ; 0) = δGG′ (3)

− v(q+G)

occ
∑

n

N
∑

n′

∑

k

〈nk+q| ei(q+G)·r |n′k〉

〈n′k| e−i(q+G′)·r′ |nk+q〉 ×
1

Enk+q−En′k

,

involve a summation over empty orbitals. Here N is the number of empty orbitals in the

truncated sum, nk is a Bloch orbital with a given crystal momentum k, band index n and

energy Enk, v(q+G) is the bare Coulomb interaction in reciprocal space and ΩGG′(q) and

ω̃GG′(q) are plasmon-pole parameters [3].

There has been much research effort invested in recent years to reduce the need for empty

orbitals in the GW formalism [9–17]. The approaches by Umari et. al. [10] and Giustino et.

al. [11] eliminate the need for empty states entirely by constructing the dielectric response

and self-energy from only occupied states within a linear-response Sternheimer equation

appraoch [11]. While these approaches eliminate the need for empty orbitals, they are

conceptually more complicated as well as more complicated to implement and optimize.

It is therefore still of great value to address the computational cost of the empty orbital

generation within the traditional GW approach laid out above.

One approach to addressing the problem of the cost associated with empty orbitals in the

traditional GW approach is to approximate the true DFT empty orbitals with approximate
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orbitals that are computationally cheaper to generate [14, 16, 17]. In the recent work of

Samsonidze et. al. [14], the authors proposed replacing the expensive step of constructing

the exact Kohn-Sham empty states from a traditional DFT package with a computationally

inexpensive process of constructing the empty states from a reduced basis set consisting

of plane-waves and resonant orbitals (generated in SIESTA [18]) orthogonalized to the real

occupied Kohn-Sham orbitals. While it was shown that this approach vastly reduces the

cost of generating the required empty orbitals, the approach adds significantly to the com-

plication of the GW process. In particular, one now must run a traditional plane wave DFT

calculation, a local orbital DFT calculation and a post-processing orthogonalization step in

order to generate the required electron orbitals needed to proceed to the GW calculation.

Additionally, the explicit sums in Eq. 2 and 3 must still be performed over these orbitals.

Another approach to the empty state problem was proposed by Tiago et. al. [13]: a

truncation of the sum over empty orbitals in Eq. 2 can be achieved with minimal loss of

accuracy by adding the contribution of the remaining orbitals within the static (COHSEX)

approximation [2, 3]. The idea relies on the fact that, in static-COHSEX, unlike GW, the

Coulomb-hole energy can be written in a simple closed form (see next section) as well as

in a sum over empty-states, as the static limit of Eq. 2. It was proposed that one may

approximate the missing Coulomb-hole contribution when truncating the sum after N (i.e.

the contribution to the sum from the empty orbitals with index between N and ∞) in

a GW calculation by their contribution to the Coulomb-hole energy in a static-COHSEX

calculation.

This static approximation, however, was shown to be of limited use by Bruneval et.

al. [12], where, instead of using the static approximation for the remaining part of the

Coulomb-hole sum, the authors proposed using an approach based on a common non-zero

energy denominator in Eq. 2. If a constant denominator is assumed, than one may use the

completion relation:
∞
∑

n=N+1

|nk〉〈nk| = 1−
N
∑

n=1

|nk〉〈nk| (4)

to replace the sum over the missing empty orbitals with a sum over the available orbitals. In

order to apply this directly to Eq. 2 and Eq. 3, one must replace the n dependent denomina-

tor with a constant. The main drawback of this common energy denominator approximation

(CEDA) approach (known also as the extrapolar method) is that the energy denominator
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is not uniquely defined and can only be treated as a somewhat ad-hoc parameter, and the

quasiparticle energy convergence is not monotonic with this parameter.

Recent studies by Kang and Hybertsen [19] have shown that a modified static COHSEX

approach can be used to accurately minimize the empty orbitals problem in the Coulomb-

hole summation of Eq 2. In that work, the authors propose completely replacing the GW

Coulomb-hole operator with a closed-form static operator (similar to that used by Tiago

[13]) with a q dependent coefficient, f(q), fit to match the GW result. This approach

has the advantage of being completely closed form, but can be improved if one relaxes the

requirement that the modified operator is used to replace the true GW contributions not

only from high energy empty orbitals but also from valence and low energy conduction

orbitals.

In this article, we propose a modified static remainder approach based on Tiago’s results

[13] that is more fully justified by the recent Kang-Hybertsen result [19]. The new approach

yields accurate GW Coulomb-hole absolute energies (to within 100 meV) with less than 10%

of the traditionally necessary empty orbitals. Furthermore, unlike the extrapolar method

of Bruneval [12], this approach yields an easy to implement procedure with no adjustable

parameters. For simplicity of presentation, we shall discuss our approach within the gener-

alized plasmon pole model for the dielectric matrix. This approach can be straightfowardly

applied to any existing GW computational package.

TRADITIONAL GW CONVERGENCE WITH EMPTY ORBITALS

As mentioned in the introduction, the band convergence of absolute energy levels in ΣCH

with the number of empty orbitals is extremely slow. In principle, one must converge a

GW calculation with respect to the number of empty stats in both Eq. 3 and 2. However,

for many systems, the quasiparticle energy dependence on the number of empty orbitals in

the dielectric screening (e.g. Eq. 3) converges much faster than with the number of empty

orbitals in Eq. 2. For example, recent calculations for ZnO show that the Coulomb-hole

contribution to the electronic band gap does not converge until 3,000+ empty orbitals are

included in the summation in Eq. 2 [20]. In Fig. 1, we demonstrate the slow convergence of

Eq. 2 in ZnO. The situation is even worse for nanosystems where absolute energies are often

required for applications involving interfaces over which absolute energy level alignment is
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needed such as the cases for molecular electronics or photovoltaic applications.

From the bottom panel of Fig. 1, it is immediately evident that the quasiparticle energy

converges much more slowly with respect to the number of empty orbitals included in the

Coulomb-hole summation, Eq. 2 than from the ǫ summation, Eq. 3. Additionally, one

may compute Eq. 3 in an alternative density functional perturbation theory approach that

avoids the sum over empty orbitals. Similar techniques [11, 21] to avoid the empty orbitals

for Eq. 2 have been proposed but they are more difficult to implement and use. Therefore,

any reduction in the summation in Eq. 2 over large numbers of empty orbitals can greatly

reduce the cost of calculation for standard GW approaches.

METHODOLOGY

The static COHSEX method is the static limit of the GW approximation for the self

energy – where everywhere ǫ(G,G′, ω) is replaced by ǫ(G,G′, 0). The static remainder

approach is based on the fact that the expectation value of the static COHSEX Coulomb-

hole operator can be expressed either in a closed form or as a sum over empty orbitals:

Σ
Coh/N
CH (n,k) = (5)

1

2

N
∑

n′′

∑

qGG′

〈nk| ei(q+G)·r |n′′k−q〉 〈n′′k−q| e−i(q+G′)·r′ |nk〉 × {
[

ǫ−1
GG′(q ; 0)− δGG′

]

v(q+G′)}

and,

Σ
Coh/∞
CH (n,k) =

1

2

∑

qGG′

〈nk| ei(G−G′)·r |nk〉
[

ǫ−1
GG′(q ; 0)− δGG′

]

v(q+G′) (6)

where N and ∞ denote a truncated empty state summation and closed form expression,

respectively. Equation (5) is equal to Eq. 2 in the limit of static dielectric screening. In the

work of Kang et. al. [19], the authors propose using a modified static-COHSEX operator

that mimics the GW operator to entirely remove the need for empty orbitals. In our current

approach, we include the full GW contribution from the low energy orbitals and add a

single correction for the high-energy orbitals, where the static approximation is expected to

perform well. One advantage of the present approach is that it can be used in conjunction
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FIG. 1: Top: The convergence of the Coulomb-hole contribution to the self-energy, Eq. 2, with

respect to the number of orbitals included in the summation, N , using a dielectric matrix calculated

with 1000 empty bands. For all calculations on ZnO, a 5x5x4 k-point grid is used. Bottom: The

convergence of the quasiparticle energy, EQP, with respect to empty states in the polarizability

sum Eq. 3 and with respect to empty states in the Coulomb-hole sum Eq. 2. The red curve shows

the VBM EQP in ZnO using a fixed 3,000 bands in the Coulomb-hole summation and varying the

number of bands included in the polarizability summation. The black curve shows the VBM EQP

in ZnO using a fixed 1,000 bands in the polarizability summation and varying the number of bands

included in the Coulomb-hole summation.

with a full-frequency (as opposed to GPP model) screening approach to both calculate

the fine structure of energy dependence of the self energy, Σ(ω), as well as converging the

absolute value with respect to empty orbitals. In our modified static remainder approach,

we calculate both the GW ΣCH partial sum (Eq. 2) and the COHSEX ΣCH partial sum (Eq.

5) up to the number of DFT bands available. We then add a modified static correction to

the GW Coulomb-hole energies:
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〈nk|Σ∞

CH(r, r
′;E) |n′k〉 = (7)

〈nk|ΣN
CH(r, r

′;E) |n′k〉+
1

2

(

〈nk|Σ
Coh/∞
CH (r, r′) |n′k〉 − 〈nk|Σ

Coh/N
CH (r, r′) |n′k〉

)

.

The factor of 1/2 in Eq. 7 is justified from the recent work of Kang and Hybertsen [19],

where the authors show that the GW contribution of high energy bands (corresponding to

large G-vectors) to the Coulomb-hole self energy asymptotes to 1/2 of the equivalent static

COHSEX band contribution.

One may qualitatively derive this result from Eq. 2, if one assumes that we are interested

in a state n with energy, E, near zero, and that, for a given high n′′, the sum over matrix

elements are dominated by a small set of q+G near such that |h̄(q+G)|2/2m ≈ En′′

and that the plasma frequency for large q and G obeys a homogeneous gas dispersion

ω̃G,G(q) ≈ |h̄(q+G)|2/2m. In this case, the contribution to Eq. 2 from a high-energy

empty orbital n′′ reduces to:

〈nk|ΣN
CH(r, r

′;E) |n′k〉 =
1

2

∑

qGG′

〈nk| ei(q+G)·r |n′′k−q〉 〈n′′k−q| e−i(q+G′)·r′ |n′k〉 (8)

×{
Ω2

GG′(q)

2ω̃2
GG′(q)

v(q+G′)}

=
1

4

∑

qGG′

〈nk| ei(q+G)·r |n′′k−q〉 〈n′′k−q| e−i(q+G′)·r′ |nk〉

×{
[

ǫ−1
GG′(q ; 0)− δGG′

]

v(q+G′)},

which, when compared to Eq. 5, confirms the factor of 1
2
.

The Coulomb-hole self-energy contribution to the convergence of energy levels in bulk

silicon (using a 5x5x5 k-point grid) and the silane (SiH4) molecule (in a supercell calculation)

are shown in Fig. 2 as a function of the band cutoff, N , in Eq. 2. The convergence on energy

levels in silane is significantly slower than that in silicon [22] because of the large number

of free-electron like vacuum states. The silicon calculations were done with a 25 Rydberg

wavefunction cutoff and a 10 Rydberg dielectric matrix cutoff. The silane calculations were

done with a 75 Rydberg wavefunction cutoff and a 6 Rydberg dielectric matrix cutoff. The

needed volume of the supercell used, (25au)3, and the corresponding number of vacuum

states, is minimized by using a truncated Coulomb interaction [23]. Despite this, the largest
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FIG. 2: Comparison between the contributions to the Coulomb-hole sum for the full GW operator

vs. results from the 1/2 the static COHSEX Coulomb-hole operator for orbitals beyond the number

of real DFT bands/orbitals used: 12 in silicon and 100 in Silane. A 5x5x5 k-point grid is used in

Si. The plotted quantity is
∑N

n′′=nDFT+1

∑

qGG′ 〈nk| ei(q+G)·r |n′′k−q〉 〈n′′k−q| e−i(q+G′)·r′ |n′k〉×

ICH
GG′(q, n, n′, n′′) where ICH is the term in {} in Eqs. (2) and (5) respectively.

computational cost in the GW calculation on silane is the DFT generation of the empty

orbitals, representing more than 50% of the total computational expense. The calculation

of the polarizability and the evaluation of the self energy require less computational time,

and they scale nearly linearly to thousands of CPUs.

RESULTS

A comparison between the convergence of the residual value of the GW expression (Eq.

2) and 1/2 of the static COHSEX approximation (Eq. 5) for the Coulomb-hole contribution

to the electron self-energy starting at some nDFT is shown in Fig. 2 for the valence band

maximum (VBM) in Silicon and the highest occupied molecular orbital (HOMO) in the

silane molecule. The figure shows the cumulative contributions of the high-energy orbitals

to ΣCH for both the GW operator and the 1/2 static COHSEX operator for orbitals above

12 and 100 for silicon and silane, respectively. The residual value of the 1/2 static COHSEX

results reproduce the equivalent GW curves extremely well. Therefore, replacing the GW

operator with the modified static remainder in Eq. 7 yields very good agreement with a

fully converged GW calculation. This justifies the truncation of the partial sum in Eq. 2

and the addition of the modified static remainder correction. For both silicon and silane,
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FIG. 3: Coulomb-hole energies of the valence band maximum in Si (left) and ZnO (right) in

the modified static-remainder approach compared to the energies from the standard approach of

truncating the Coulomb-hole summation in Eq. 2 as a function of the number of DFT bands. In

the static-remainder approach the summation is also truncated at the same number of bands but

the modified static remainder is added to the sum. A 5x5x5 and 5x5x4 k-point grid is used in Si

and ZnO respectively. The grey lines represent the result using the maximum number of bands

and the static remainder included.

one can get a converged ΣCH to within 100 meV with less than 10% of the original number

of empty orbitals required. This is a very high level of accuracy considering the modified

static correction in both cases is greater than 1 eV. Even higher accuracy may be reached if

one increases the number of actual DFT empty orbitals used. In the case of Si, an accurate

ΣCH (within 100 meV) can be reached with the use of only 10 empty bands when a 5x5x5

k-point grid was used. Furthermore, the convergence for this approach is nearly monotonic

in terms of the number of empty Kohn-Sham orbitals employed in the calculation. Figure 3

shows the convergence of the modified static remainder corrected ΣCH and the uncorrected

GW ΣCH as a function of DFT empty bands used for Si an ZnO - the grey line corresponds

the ”best guess” final value using the static-remainder on top of the largest number of real

DFT bands.

In table I, we show the convergence behavior with respect to empty orbitals of our

GW+static-remainder approach compared to a traditional GW approach for bulk Si, MgO,

ZnO, and solid Ar. In all cases, the modified static-remainder approach significantly im-

proves the convergence rates. An accuracy of less than 100 meV in the absolute energies

can be typically reached with only a few conduction bands.
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Si - Γ 10 Bands 40 Bands 80 Bands 160 Bands

n=1 -5.99 6.30 6.47 6.53

n=1 (SR) -6.56 6.55 6.55 6.55

n=4 6.19 5.62 5.30 5.15

n=4 (SR) 4.99 4.99 5.04 5.08

n=5 9.46 8.90 8.60 8.48

n=5 (SR) 8.35 8.33 8.39 8.41

n=10 15.23 14.48 14.10 13.94

n=10 (SR) 13.76 13.73 13.80 13.84

ZnO - Γ 100 Bands 500 Bands 1500 Bands 3000 Bands

n=26 6.11 4.48 4.00 3.90

n=26 (SR) 3.88 3.73 3.80 3.82

n=27 7.97 7.32 7.22 7.21

n=27 (SR) 7.22 7.19 7.20 7.21

MgO - Γ 50 Bands 200 Bands 450 Bands 900 Bands

n=4 -2.09 -2.86 -2.95 -2.96

n=4 (SR) -3.15 -3.02 -2.97 -2.97

n=5 5.10 4.81 4.78 4.78

n=5 (SR) 4.70 4.77 4.78 4.78

Ar - Γ 50 Bands 150 Bands 375 Bands 750 Bands

n=4 -7.64 -8.19 -8.39 -8.42

n=4 (SR) -8.52 -8.50 -8.43 -8.43

n=5 5.26 5.38 5.411 5.42

n=5 (SR) 5.45 5.43 5.42 5.42

TABLE I: Convergence of the EQP (in eV) within the G0W0 approximation with respect to the

number of DFT orbitals used in the Coulomb-hole summation for several material systems. Here

n refers to the band index and (SR) refers to the addition of the static remainder.
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FIG. 4: Coulomb-hole part of the self-energy, with and without the static-remainder, for the highest

occupied molecular orbital (HOMO) of the BND (bithiophene naphthalene diimide - shown in inset)

molecule as a function of the number of DFT orbitals included in the Coulomb-hole sum. The grey

line represents the result using the maximum number of bands and the static remainder included.

To test the modified static reminder approach on a large molecular system, we compute

the Coulomb-hole contribution to the self-energy for the BND (bithiophene naphthalene

diimide) molecule containing 46 atoms [24]. The supercell was set to 76.93 x 36.31 x 20.18

atomic units. The calculations were done with a 60 Rydberg wavefunction cutoff and a

6 Rydberg dielectric matrix cutoff. The polarizability was computed with 953 orbitals

(78 occupied + 875 empty orbitals up to 1 Rydberg cutoff in DFT eigenvalues), and the

Coulomb-hole part of the self-energy was evaluated as a function of the number of orbitals,

as shown in Fig. 4. One can see that the Coulomb-hole term computed with 953 orbitals

without the addition of the remainder is only converged to within 1 eV. Including the static

remainder correction improves the convergence to better than 0.1 eV.

In conclusion, we have presented a modified static remainder approach that reduces

the number of empty states involved in evaluating ΣCH by over an order of magnitude.

This approach is particularly useful when applying the GW method to molecules and other

nanostructures where absolute energies, as opposed to just energy gaps, are desired. A

limitation of this method is that it does not address the problem of the sum over empty

states required in evaluating the dielectric matrix (Eq. 3). However, the dielectric matrix

converges faster than the absolute energies of ΣCH for many solids [20] and can more easily

be replaced by calculation using the density functional perturbation theory approaches. Our
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approach here shows nearly monotonic convergence towards the converged GW ΣCH values

and can be implemented in a simple and automatic way in standard GW computer codes.

J.D. and M.J. acknowledge support from the Director, Office of Science, Office of Basic

Energy Sciences, Materials Sciences and Engineering Division, U.S. Department of Energy

under Contract No. DE-AC02-05CH11231. G.S. acknowledges support under National Sci-

ence Foundation Grant No. DMR10-1006184. Computational resources have been provided

by NSF through TeraGrid resources at NICS and by DOE at Lawrence Berkeley National

Laboratory’s NERSC facility.

[1] L. Hedin, Phys. Rev. 139, A796 (1965).

[2] L. Hedin and S. Lundqvist, in Advances in Research and Applications, edited by F. Seiz,

D. Turnbull, and H. Ehrenreich (Academic Press, 1970), vol. 23 of Solid State Physics, pp. 1

– 181.

[3] M. S. Hybertsen and S. G. Louie, Phys. Rev. B 34, 5390 (1986).

[4] S. G. Louie, Conceptual Foundations of Materials: A standard model for ground- and excited-

state properties, Contemporary Concepts of Condensed Matter Science (Elsevier, 2006).

[5] C. D. Spataru, S. Ismail-Beigi, L. X. Benedict, and S. G. Louie, Phys. Rev. Lett. 92, 077402

(2004).

[6] C. D. Spataru, S. Ismail-Beigi, L. X. Benedict, and S. G. Louie, Appl. Phys. A 78, 1129

(2004).

[7] J. Deslippe, C. D. Spataru, D. Prendergast, and S. G. Louie, Nano Lett. 7, 1626 (2007).

[8] W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).

[9] L. Reining, G. Onida, and R. W. Godby, Phys. Rev. B 56, R4301 (1997).

[10] P. Umari, G. Stenuit, and S. Baroni, Phys. Rev. B 79, 201104(R) (2009).

[11] F. Giustino, M. L. Cohen, and S. G. Louie, Phys. Rev. B 81, 115105 (2010).

[12] F. Bruneval and X. Gonze, Phys. Rev. B 78, 085125 (2008).

[13] M. L. Tiago and J. R. Chelikowsky, Phys. Rev. B 73, 205334 (2006).

[14] G. Samsonidze, M. Jain, J. Deslippe, M. L. Cohen, and S. G. Louie, Phys. Rev. Lett. 107,

186404 (2011), URL http://link.aps.org/doi/10.1103/PhysRevLett.107.186404.

[15] J. A. Berger, L. Reining, and F. Sottile, Phys. Rev. B 82, 041103(R) (2010).

13



[16] L. Steinbeck, A. Rubio, L. Reining, M. Torrent, I. D. White, and R. W. Godby, Comput.

Phys. Commun. 125, 105 (2000).

[17] S. Ismail-Beigi and S. G. Louie, private communication (????).

[18] J. M. Soler, E. Artacho, J. D. Gale, A. Garcia, J. Junquera, P. Ordejon, and D. Sanchez-Portal,

J. Phys.: Condens. Matt. 14, 2745 (2002).

[19] W. Kang and M. S. Hybertsen, arXiv:1008.4320v1 (2010).

[20] B.-C. Shih, Y. Xue, P. Zhang, M. L. Cohen, and S. G. Louie, Phys. Rev. Lett. 105, 146401

(2010).

[21] P. Umari, G. Stenuit, and S. Baroni, Phys. Rev. B 81, 115104 (2010).

[22] M. Rohlfing and S. G. Louie, Phys. Rev. B 62, 4927 (2000).

[23] S. Ismail-Beigi, Phys. Rev. B 73, 233103 (2006).

[24] C. Tao, J. Sun, X. Zhang, R. Yamachika, D. Wegner, Y. Bahri, G. Samsonidze, M. L. Cohen,

S. G. Louie, T. D. Tilley, et al., Nano Lett. 9, 3963 (2009).

14


